Outline

• Products regulated
• Significance of complex biologics
• Product and process
• Cutting edge products
• Facilitating development
CBER Regulated Products: Something Old and Something New

Diphtheria Antitoxin

CRISPR/Cas9 Genome Editing
Products Regulated by CBER

- Blood Products
- Vaccines (preventative and therapeutic)
- Allergenics
- Live Biotherapeutic Products
- Devices Related to Biologics
- Human Tissues and Cellular Products
- Xenotransplantation Products
- Gene Therapies
The Significance of CBER’s Complex Biologics
CBER Regulated Products: Vaccines for Disease Prevention

>150 million doses of influenza vaccine given in 2016-2017

VACCINES WORK

These bubbles are sized according to the annual number of disease cases in the US during the 1900s versus 2010. We've come so far. It's a reminder that while disease rates are low, most diseases haven't disappeared. This is why we continue to vaccinate.

SMALLPOX

THEN 29,005

NOW 0

DIPHTHERIA

THEN 21,053

NOW 0

PERTUSSIS

THEN 200,752

NOW 21,291

TETANUS

THEN 580

NOW 8

POLIO

THEN 16,316

NOW 0

MEASLES

THEN 530,217

NOW 61

MUMPS

THEN 162,344

NOW 2,528

RUBELLA

THEN 47,745

NOW 6

HAEMOPHILUS INFLUENZAE

THEN 20,000

NOW 270

MEASLES

530,217 Cases

MUMPS

162,344 Cases

PERTUSSIS

200,752 Cases

RUBELLA

47,745 Cases

www.fda.gov

References:

Vaccines are Important for Combating Emerging Infectious Diseases

Global Examples of Emerging and Re-Emerging Infectious Diseases

- Cryptosporidiosis
- West Nile virus
- E. coli O104:H4
- Ebola hemorrhagic fever
- Drug-resistant malaria
- Diphtheria
- MERS-CoV
- Rift Valley fever
- Typhoid fever
- SFTSV bunyavirus
- E. coli O157:H7
- H7N9 influenza
- H5N1 influenza
- SARS
- Hendra virus
- Enterovirus 71
- Chikungunya fever
- Human monkeypox
- Plague
- Dengue
- Yellow fever
- Human African trypanosomiasis
- Cholera
- Marburg hemorrhagic fever
- MDR/XDR tuberculosis
- Human monkeypox
- Lassa fever
- Lyme disease
- vCJD
- Anthrax bioterrorism
- Hantavirus pulmonary syndrome
- 2009 H1N1 influenza
- Adenovirus 14
- MRSA
- H3N2v influenza
- Cyclosporiasis
- E. coli O157:H7
- Human monkeypox
- Listeriosis

Source: National Institute for Allergy and Infectious Diseases
CBER Regulated Products: Keeping the Blood Supply Safe

Need for continued vigilance against emerging threats

Adapted from TRANSFUSION 2006;46:1624-1640
CBER Regulated Products: Advanced Therapies at the Leading Edge

Ex vivo or *In vivo* gene therapy to treat various conditions
CBER Regulated Products: Regenerative Medicine

• Involves cutting edge science in fields including
 – Cell therapies
 – Therapeutic tissue engineering products
 – Human cell and tissue products
 – Some combination products

• Field with great promise that goes directly to the FDA’s role in helping meet unmet medical need
Complex Biologics: Product and Process Intertwined
Complexity of Therapeutics

One subunit of a protein

Protein composed of about 1100 subunits

Cell composed of about 3.6×10^6 proteins

L-tryptophan
Small Molecule Drug

IgG antibody molecule
Protein Biologic

Mesenchymal stem cell
Cellular Biologic

10^2 Atoms

10^5 Atoms

10^{14} Atoms
Evolution of Hemophilia A Treatment

Blood Transfusion

1930

Fresh Frozen Plasma

1960

Factor VIII Purified from Plasma

1990

Recombinant Factor VIII

2020

Factor VIII Gene Therapy

www.fda.gov
Plasma Derivative Preparation

Factor VIII Purification from Plasma
Recombinant Factor VIII

Gene Therapy for Hemophilia A

<table>
<thead>
<tr>
<th>Vector</th>
<th>Capacity (kb)</th>
<th>Immune Response</th>
<th>Vector Genomes</th>
<th>Advantages</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrovirus</td>
<td>8</td>
<td>Low</td>
<td>Integrated</td>
<td>Stable expression in daughter cells</td>
<td>Works only in dividing cells; oncogenesis</td>
</tr>
<tr>
<td>Lentivirus</td>
<td>8</td>
<td>Low</td>
<td>Integrated</td>
<td>Stable expression in daughter cells</td>
<td>Integration may cause oncogenesis</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>8</td>
<td>High</td>
<td>Episomal</td>
<td>Efficient transduction of most tissues</td>
<td>Capsid causes strong immune response</td>
</tr>
<tr>
<td>Helper-dependent adenovirus</td>
<td>30</td>
<td>High</td>
<td>Episomal</td>
<td>Efficient transduction of most tissues</td>
<td>Capsid causes strong immune response</td>
</tr>
<tr>
<td>Adeno-associated virus</td>
<td>≈5</td>
<td>Low</td>
<td>Episomal</td>
<td>Non-pathogenic</td>
<td>Small capacity; immune response</td>
</tr>
</tbody>
</table>

Complex Biologics: Products at the Cutting Edge of Science and Medicine
Chimeric Antigen Receptor-T Cells
Chimeric Antigen Receptor-T Cells

- Chimeric antigen receptor-T cells (CAR-T cells) represent a cell-based gene therapy with potential applications to multiple diseases
 - Hematologic malignancies
 - Solid tumors
 - Infectious disease
 - Autoimmune disease
- Possibility to provide therapeutic benefit with an extended duration of effect
Chimeric Antigen Receptor-T Cells

• Conventional ex vivo expanded T cells targeting tumor antigens show some efficacy, but poor persistence
• Genetically modified T cells harness immunity (cytotoxic functions, cytokine secretion, etc.) to attack tumor or other immune effector cells
• Gene transfer improves functional properties of transduced T cells (e.g., antigen recognition, effector function)
Basic Overview of CAR-T Therapy

- **Apheresis Product**
 - T cell activation and transduction with gene transfer vector
 - Expand in culture CD3/CD28 beads \+ IL-2 / IL-15

- **Gene modified T cell Infusion**

- **Dose formulation Product testing**

Patient may receive pre-conditioning chemotherapy prior to infusion
Sometimes cytokine support (IL-2) post infusion

www.fda.gov
Genetic Modification: Introduction of Chimeric Antigen Receptor

- Using molecular genetics, novel protein receptors can be created that combine features of different proteins into one.
- This allows one to both target and activate T cells to eliminate a cancerous or undesirable cell type.
Potential Advantages to Use of Genetically-Modified Cellular Therapies

• Appropriate methods can be used to address the issue of location of genomic integration
 – Use of genome editing possible (CRISPR/Cas9*)

• Ability to select appropriately transduced cells for administration to recipients
 – Use of next generation sequencing

• It is possible to turn off the effect of the cells, if necessary, through use of certain approaches
 – Use of suicide genes

*Clustered regularly interspaced short palindromic repeats/Cas9 enzyme gene editing system
Potential Challenges to Use of Genetically-Modified Cellular Therapies

• Process must be developed to consistently manufacture and characterize cells
• Logistics facilitating production and delivery of cells must be carefully orchestrated
• Administration of therapies may be associated with various short and longer term side effects
 – Acute inflammatory process
 • Cytokine release syndrome
 – Immune function
Complex Biologics: Facilitating Development
Expedited Pathways

• Fast Track Designation
• Breakthrough Designation (2012 – FDASIA)
• Accelerated Approval
• Priority Review
CBER Breakthrough Therapy Designations Since Program Inception

Data as of Jun 30, 2017
CBER Breakthrough Therapy Requests by Product Type

- Vaccines/ Immunotherapies/ Allergenics: 25%
- Cell Therapies/Immunotherapies: 27%
- Gene Therapies: 38%
- Blood Factors: 27%
- Other: 1%

Data as of Jun 30, 2017
CBER BT Requests

Granted by Product Type

Data as of Jun 30, 2017
2016 – 21st Century Cures Act

- Patient-focused drug development
- Advancing New Drug Therapies
- Modern Trial Design and Evidence Development
- Patient Access to Therapies and Information
- Antimicrobial Innovation and Stewardship
- Medical Device Innovations
- Improving Scientific Expertise and Outreach at FDA
- Regenerative Medicine Provisions

www.fda.gov
Regenerative Medicine Advanced Therapy (RMAT) Provisions

- A designation has been created to expedite the development and review of regenerative advanced therapies
- Applies to certain cell therapies, therapeutic tissue engineering products, human cell and tissue products, and combination products
 - Includes genetically-modified cellular therapies
- Products must be intended for serious or life-threatening diseases or conditions
RMAT Designation

• Preliminary clinical evidence must indicate potential to address unmet medical needs
• Designation requests to FDA from sponsors must receive a response within 60 days
• Designated products are eligible as appropriate for priority review and accelerated approval
RMAT Designation

• Post-approval requirements for accelerated approval can be fulfilled as appropriate through submission of
 – Clinical evidence, clinical studies, patient registries or other sources of real world evidence such as electronic health records
 – The collection of larger confirmatory datasets as agreed upon
 – Post-approval monitoring of all patients treated with such therapy prior to approval of the therapy

www.fda.gov